热力学中都会提到,热量\(Q\)不是一个恰当微分,写为\(\delta Q\),这是因为\(\delta Q\)的积分和积分路径有关,也就是说对于两条起点和终点都是\(A\)\(B\),但是中间过程不同的路径\(L_1\)\(L_2\)而言,有:

\[ \int_{L_1} \delta Q \neq \int_{L_2} \delta Q \]

类似的,体积功\(\delta W\)的积分也与路径有关,这一点很好理解。假设有2个过程A, B:

VPAB

由于\(W=\int PdV\),曲线A, B下方与x轴形成的面积即对应的体积功,很容易看出:

\[ W_A \neq W_B \]

在没有非体积功的情况下,系统都是从状态1\((P_1, V_1)\)到状态2\((P_2, V_2)\)。因此状态函数内能的改变量\(\Delta U\)应相等。根据热力学第一定律:

\[ \Delta U = Q-W \]

所以\(Q_A \neq Q_B\)

积分因子

对于非恰当微分方程

\[ du = Pdx + Qdy \]

其中\(\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}\),若存在一个函数\(\mu(x, y) \neq 0\),使得\(\mu Pdx + \mu Qdy = 0\)成为全微分方程,即满足:

\[ \frac{\partial (\mu P)}{\partial y} = \frac{\partial (\mu Q)}{\partial x} \]

则称\(\mu\)为方程\(du\)的积分因子。

所以我们现在来找\(\delta Q\)的积分因子。设想由2个物体组成的孤立体系,2个物体之间有热接触,因此温度均为\(t\)(经验温度),设想一个状态函数\(\sigma\),用于表示系统所处的状态。在绝热可逆过程中:

\[ \begin{aligned} \delta Q_1 &= \tau_1(\sigma_1, t)d\sigma_1 \\ \delta Q_2 &= \tau_2(\sigma_2, t)d\sigma_2 \\ \delta Q &= \tau(\sigma, t)d\sigma \\ \tau(\sigma, t)d\sigma &= \tau_1(\sigma_1, t)d\sigma_1 + \tau_2(\sigma_2, t)d\sigma_2 \\ \end{aligned} \]

其中\(1/\tau_1, 1/\tau_2, 1/\tau\)为我们要找的积分因子。我们将\(\sigma_1, \sigma_2, t\)视为独立变量,分别对\(\sigma\)求导,有:

\[ \begin{aligned} \frac{\partial \sigma}{\partial \sigma_1} &= \frac{\tau_1}{\tau} \\ \frac{\partial \sigma}{\partial \sigma_2} &= \frac{\tau_2}{\tau} \\ \frac{\partial \sigma}{\partial t} &= 0 \\ \end{aligned} \]

可见\(\sigma\)不是\(t\)的函数,因为\(\sigma\)是状态函数,具有全微分的性质,所以二阶导数与微分的顺序无关,所以

\[ \frac{\partial}{\partial t}\left(\frac{\partial \sigma}{\partial \sigma_1}\right) = \frac{1}{\tau^2} (\tau \frac{\partial \tau_1}{\partial t}-\tau_1\frac{\partial \tau}{\partial t}) = 0 \] \[ \frac{1}{\tau} \frac{\partial \tau}{\partial t} = \frac{1}{\tau_1} \frac{\partial \tau_1}{\partial t} \]

同理,

\[ \frac{1}{\tau} \frac{\partial \tau}{\partial t} = \frac{1}{\tau_2} \frac{\partial \tau_2}{\partial t} \]

所以

\[ \frac{1}{\tau} \frac{\partial \tau}{\partial t} = \frac{1}{\tau_1} \frac{\partial \tau_1}{\partial t} = \frac{1}{\tau_2} \frac{\partial \tau_2}{\partial t} \]

因为\(\tau_1 = \tau_1(\sigma_1, t)\),并不含有\(\sigma_2\),同理\(\tau_2 = \tau_2(\sigma_2, t)\),并不含有\(\sigma_1\),所以上面等式成立的条件为等式各方只是\(t\)的函数,而与\(\sigma_1, \sigma_2\)无关,将该函数设为\(g(t)\),于是

\[ \tau_i = e^{\int g(t)dt}h_i(\sigma_i), (i = 1, 2) \] \[ \tau = e^{\int g(t)dt}h(\sigma_1, \sigma_2) \]

温度定义(之一)

令绝对温度\(T = C \cdot e^{\int g(t)dt}\),该函数只与经验温度\(t\)有关,常数\(C\)可通过人为指定来固定(如水的沸点和凝固点之间平均划分为100份)。将\(\tau_i\)代入\(\delta Q_i\)的公式,有

\[ \delta Q_i = T \frac{h_i(\sigma_i)}{C} d\sigma_i, (i=1, 2) \]

熵定义(之一)

\(dS_i = \frac{h_i(\sigma_i)}{C} d\sigma_i\),只依赖于状态函数\(\sigma_i\),因此\(S_i\)也是一个状态函数,所以这就找到了非恰当微分\(\delta Q\)的积分因子:

\[ \frac{\delta Q_i}{T} = dS_i \]

对于有热接触的2个物体:

\[ \delta Q = \delta Q_1 + \delta Q_2 = T(dS_1 + dS_2) = TdS \]

即可逆过程的热力学第二定律数学式。

References

  1. 黄子卿. "热力学第二定律从物理说法导出数学说法." 化学通报 5 (1974): 56-59.